2024年全国100所普通高等学校招生全国统一考试·理数冲刺卷(一)1[24·CCJ·理数·QG]试题

2024年全国100所普通高等学校招生全国统一考试·理数冲刺卷(一)1[24·CCJ·理数·QG]试题正在持续更新,目前2025衡水金卷周测卷答案网为大家整理了相关试题及答案,供大家查缺补漏,高效提升成绩。

第卷非选择题(共90分)中081平在四二、填空题:本题共4小题,每小题5分,共20分5K.S-c13者CC,则二项武之的民开式中,常数项是品立ASA14.函数x是+2-2x+3的极大值点为12原度或戈宝人15.“康威圆定理”是英国数学家约翰康威引以为豪的研究成果之一,定理的内容是:如图,△RST的三条边长分别为a,b,c(即ST=a,SR=b,RT=c)R延长线段SR至点A,使得RA=a,以此类推得到如图所示的点B,C,D,E,F,那么这六点共圆,此圆称为康威圆若b=3,c=4,am∠TSR=4】则往此康威圆内投拥一点,该点落在△R5T内的概率为-日9四时日0一不等武+血口>对任意xe0,+四)恒成立,则实数a的取值范围是0(a81a三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答(一)必考题:共60分112117.(本题满分12分)设各项都为正数的数列{a.}的前n项和为S。,且a,=1,。a14n2-1(1)求数列(a}的通项公式;(2)设函数f(x)=x·2,且b.=f(a,),求数列{h}的前n项和T·点追计主到出这国18.(本题满分12分)如图,P为圆锥的顶点,O是圆锥底面的圆心,四边形ABCD是圆O的内接四边形,BD为底面圆的直径,M在母线PB上,且AB=BC=BM=2,BD-4,MD=2√5(1)求证:平面AMC⊥平面ABCD;(2)设点E为线段PO上动点,求直线CE与平面ADM所成角的正弦值的最大值数自到算音行图是随年面张的m效变,爱五19.(本题满分12分)中国职业男篮CBA总决赛采用七场四胜制,即若有一队先胜四场,则此队为总冠军,比赛就此结束现甲、乙两支球队进行总决赛,因两队实力相当,每场比赛两队获胜的可能性均为。据以往资料统计,第一场比赛可获得门票收人40万元,以后每场比赛门票收入比上一场增加100万元,(KHM)高三数学(理科)第3页(共4页)
本文标签: